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Most of this review is from the CME308 course notes taught by Peter Glynn and scribed by Nick West. This
course presumes knowledge of Chapters 1 to 3 of “Introduction to Probability Models” by Sheldon M. Ross.
This material is also largely covered in the course text by P. Bremaud.

1.1 Probability: The Basics

Ω : sample space

ω ∈ Ω : sample outcome

A ⊆ Ω : event

X : Ω → S : “S-valued random variable”

P : a probability (distribution / measure) on Ω

A probability has the following properties:

1. 0 ≤ P{A} ≤ 1 for each event A.

2. P{Ω} = 1

3. for each sequence A1, A2, . . . of mutually disjoint events

P

{

∞
⋃

i=1

Ai

}

=
∞
∑

i=1

P {Ai}

1.2 Conditional Probability

The conditional probability of A, given B, written as P{A|B}, is defined to be

P{A|B} =
P{A ∩B}
P{B} .

It is a probability on the new sample space ΩB ⊂ Ω; P{A|B} is interpreted as the likelihood / probability
that A occurs given knowledge that B has occurred.

Conditional probability is fundamental to stochastic modeling. In particular in modeling “causality” in a
stochastic setting, a causal connection between B and A means:

P{A|B} ≥ P{A}.
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1.3 Independence

Two events A and B are independent of one another if

P{A|B} = P{A}

i.e. P{A∩B} = P{A}P{B}. Knowledge of B’s occurrence has no effect on the likelihood that A will occur.

1.4 Continuous Random Variables

Given a continuous rv X taking values in R, its probability density function fX(·) is the function satisfying:

P{X ≤ x} =

∫ x

−∞

fX(t)dt.

We interpret fX(x) as the “likelihood” that X takes on a value x. However, we need to exercise care in that
interpretation. Note that

P{X = x} =

∫ x

x

fX(t)dt = 0,

so the probability that X takes on precisely the value x (to infinite precision) is zero. The “likelihood
interpretation” comes from the fact that

P{X ∈ [a− ǫ, a+ ǫ]}
P{X ∈ [b − ǫ, b+ ǫ]} =

∫ a+ǫ

a−ǫ
fX(t)dt

∫ b+ǫ

b−ǫ
fX(t)dt

ǫ→0−→ fX(a)

fX(b)

so that fX(a) does indeed measure the relative likelihood that X takes on a value a (as opposed, say, to b).

Given a collection X1, X2, . . . , Xn of real-valued continuous rvs its joint probability density function (pdf)
is defined as the function f(X1,X2,...,Xn)(·) satisfying

P{X1 ≤ x1, . . . , Xn ≤ xn} =

∫ x1

−∞

· · ·
∫ xn

−∞

f(X1,X2,...,Xn)(t1, t2, . . . , tn)dt1 · · · dtn.

Again, f(X1,...,Xn)(x1, . . . , xn) can be given a likelihood interpretation. The collection X1, X2, . . . is indepen-
dent if

f(X1,X2,...,Xn)(x1, x2, . . . , xn) = fX1(x1) · · · fXn
(xn)

for all (x1, . . . , xn) ∈ R
n.

Finally, the conditional pdf of X given Y = y is given by

fX|Y (x|y) =
f(X,Y )(x, y)

fY (y)
.

1.5 Expectations

If X is a continuous rv, its expectation is just

E [X ] =

∫ ∞

−∞

xfX(x)dx

(assuming the integral exists).
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Suppose that we wish to compute the expectation of Y = g(X1, . . . , Xn), where (X1, . . . , Xn) is a jointly
distributed collection of continuous rvs. The above definition requires that we first compute the pdf of Y
and then calculate E [Y ] via the integral

E [Y ] =

∫ ∞

−∞

yfY (y)dy.

Fortunately, there is an alternative approach to computing E[Y ] that is often easier to implement.

Result 1.1: In the above setting, E[Y ] can be compute as:

E[Y ] =

∫ ∞

−∞

· · ·
∫ ∞

−∞

g(x1, . . . , xn)f(X1,...,Xn)(x1, . . . , xn)dx1 · · · dxn.

Remark 1.1: In older editions of his book, Sheldon Ross referred Result 1.1 as the “Law of the Unconscious
Statistician”!.

Example 1.1: Suppose X is a uniformly distributed rv on [0, 1], so that

fX(x) =

{

1 0 ≤ x ≤ 1

0 o.w.

Let Y = X2.
Approach 1 to computing E[Y ]: Note that P{Y ≤ y} = P{X2 ≤ y} = P{X ≤ √

y} =
√
y. So,

fY (y) =
d

dy
y

1
2 =

1

2
y−

1
2 .

Hence,

E[Y ] =

∫ 1

0

yfY (y)dy =
1

2

∫ 1

0

y
1
2 dy =

1

2

[

2

3
y

3
2

]1

0

=
1

3

Approach 2 to computing E[Y ]:

E[Y ] =

∫ 1

0

g(x)fX(x)dy =

∫ 1

0

x2dx =
1

3
.

The expectation of a random variable is interpreted as a measure of a rv’s “central tendency .” It is one
of several summary statistics that are widely used in communicating the essential features of a probability
distribution.
Finally, the expectation operator is a linear functional. Let Y =

∑

i aiXi. Then

E[Y ] =
∑

i

aiE[Xi].

1.6 Commonly Used Summary Statistics

Given a rv X , the following are the most commonly used “summary statistics.”

1. Mean of X: The mean of X is just its expectation E[X ]. We will see later, in our discussion of the
law of large numbers, why E[X ] is a key characteristic of X ’s distribution.

2. Variance of X:
var(X) = E

[

(X − E[X ])2
]

This is a measure of X ’s variability.
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3. Standard Deviation of X:
σ(X) =

√

var(X)

This is a measure of variability that scales appropriately under a change in the units used to measure
X (e.g. if X is a length, changing units from feet to inches multiplies the variance by 144, but the
standard deviation by 12).

4. Squared Coefficient of Variation:

c2(X) =
var(X)

E [X ]2

This is a dimensionless measure of variability that is widely used when characterizing the variation
that is present in a non-negative rv X (e.g. task durations, component lifetimes, etc).

5. kth Moment of X: The kth moment of a random variable X is E[Xk].

6. The probability that a random variable exceeds a given value x, P (X ≤ x) can also be written as an
expectation of an indicator function,

P (X ≤ x) = E[I(X ≤ x)]

where I = 1 if X ≤ x and I = 0 otherwise.

1.7 Covariance and Correlation

The covariance of two random variables X and Y is given by

Cov[X,Y ] = E[(X − E[X ])(Y − E[Y ])]

= E[XY ]− E[X ]E[Y ]

If X = (X1, . . . , Xn) is a vector of random variables, then its covariance matrix is

C = E[(X − E[X ])(X − E[X ])T ] = E[XXT ]− E[X ]E[X ]T .

A covariance matrix is always symmetric and positive semi-definite. The correlation coefficient is

ρ =
Cov[X,Y ]

√

Var[X ]Var[Y ]

The random variables X and Y are uncorrelated if E[XY ] = E[X ]E[Y ]. If X is a vector of uncorrelated
random variables, then C is diagonal.

1.8 Important Continuous Random Variables

1. Uniform(a,b) rv: X ∼ Unif (a, b), a < b if

fX(x) =

{

1
b−a

a ≤ x ≤ b

0 o.w.

Applications: Arises in random number generation, etc.

Statistics:

E [X ] =
a+ b

2
var (X) =

(b− a)2

12
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2. Beta(α, β) rv: X ∼ Beta (α, β), α, β > 0, if

fX(x) =

{

xα(1−x)β

B(α,β) 0 ≤ x ≤ 1

0 o.w.

where B(α, β) is the “normalization factor” chosen to ensure that fX(·) integrates to one, i.e.

B(α, β) =

∫ 1

0

yα(1− y)βdy.

Applications: The Beta distribution is a commonly used “prior” on the Bernoulli parameter p.

Exercise 1.1: Compute the mean and variance of a Beta (α, β) rv in terms of the function B(α, β).

3. Exponential(λ) rv: X ∼ Exp (λ), λ > 0 if

fX(x) =

{

λe−λx x ≥ 0

0 o.w.

Applications: Component lifetime, task duration, etc.

Statistics:

E [X ] =
1

λ
var (X) =

1

λ2

4. Gamma(λ, α) rv: X ∼ Gamma (λ, α), λ, α > 0, if

fX(x) =

{

λ(λx)α−1

Γ(α) e−λx x ≥ 0

0 o.w.

where

Γ(α) =

∫ ∞

0

yα−1e−ydy

is the “gamma function.”

Applications: Component lifetime, task duration, etc.

Statistics:
E [X ] =

α

λ
var (X) =

α

λ2

5. Gaussian / Normal rv: X ∼ N
(

µ, σ2
)

, µ ∈ R, σ2 > 0, if

fX(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

Applications: Arises all over probability and statistics (as a result of the “central limit theorem”).

Statistics:
E [X ] = µ var (X) = σ2

Note that N
(

µ, σ2
) D
= µ+ σN(0, 1), where

D
= denotes equality in distribution. (In other words, if one

takes a N (0, 1) rv, scales it by σ and adds µ on to it, we end up with a N
(

µ, σ2
)

rv.
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